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A group of quadrature formulae for end-point singular functions is presented generalizing classical
end-point corrected trapezoidal quadrature rules. The actual values of the end-point corrections are
obtained for each singularity as a solution of a system of linear algebraic equations. The algorithm
is applicable to a wide class of monotonic singularities and does not require that an analytical
expression for the singularity be known; only the knowledge of its first several moments and the
ability to evaluate it on the interval of integration are needed. " Iz a t
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1. Introduction
When a numerical quadrature rule for a class of singular functions is derived, it is usually

a generalization of some technique for numerical integration of non-singular functions. [3, 4,
5] use Richardson-style extrapolation to construct quadrature rules for singularities of the form
X", -1 < 'Y < 1. [7, 8, 9] generalize the Euler-Maclaurin expansion for integrands with certain
kinds of singularities. In the present paper, the end-point corrected trapesoidal quadrature rules
are generalized. While the standard end-point corrected trapezoidal rules are usually derived by
means of the Euler-Maclaurin formula, their generalizations for singular functions are obtained in
this paper as solutions of certain systems of linear algebraic equations (see Section 2). The rate
of convergence of resulting quadrature rules is investigated analytically for a fairly broad clas of
monotonic singularities in Sections 3 - 5. However, our numerical experiments indicate that theme
quadratures can be effectively applied to a considerably broader class of singularities than the ones
investigated in Sections 3 - 5 (see Section 6).

The principal advantage of the approach of this paper is its generality (see Sections 3 - 6).
Also, since almost all integration weights are equal, it is convenient from the programming point
of view (see, for example, [2]). An obvious drawback of the algorithm is the fact that there is no
simple analytical expression for the corrections; they have to be evaluated numerically for each

*. type of singularity, and for each subdivision of the interval of integration, unless the singularity is
either of the form log(x), or of the form z.

2. End-pont corrected trapezoidal rules for singular functions
A right-end point corrected trapezoidal rule T" is defied by the formula

T7n(f) - h. + f(zi)) + h. oi . f(zn-.i) (2.1)

where f: (0, 1] -, R 1 is an integrable function, n, m are a pair of natural numbers, h zi for
i= 1,2,..., n, and a = (, 02, ... , Cm) is a finite sequence of real numbers. We will say that the rule
T. is of right-end order k > 1 iff for any f C ck [0, 1] such that f(0) = fl(0) = =(k) (0) - 0, t

there exists c > 0 such that
1 T.-(f) - f f(t)dt j< £ (2.2)-,:'-

0 nk*

It easily follows from the Euler-Maclaurin formula that for any k > 1, there exists a vector o i
(a, ..., ck) such that the right- end order of the formula Tn is equal to k (see, for example, [6]).

Suppose now that the function f: (0, 1] - R1 is of the form

AX) 0 (x). -() + 0(r) (2.3)

with 0,1 le e c [O, 1], and s E c(O, 1] an integrable function with a singularity at zero. For a finite
sequence 8 - (1.,/32, ... Om), we will define the mapping To"O : c(0. 11 - R1 by the formulae

m
8-tT.,&(f T.(S + 6i . (>,j). (2.4)

h
x i . h t . 1, 2, .M. (2.5)

. . -' - '. -:- '..'-_- * .'.' - :. .. " . " ." .- -. .. .*- -
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We will use expressions T-p with appropriately chosen a, 0 as quadrature formulae for for functions
of the form (2.3), and the following construction provides a tool for finding P once & is given.

For a pair of natural numbers k, n, we will consider the following system of linear algebraic
equations with respect to the unknowns $7t i -1,2,...,2k:

2kI

I1 1 z 'dz - T:n('- 1) (2.6)
j-1

for i 1,2,...,k ,and

2k 0

-k+1 l. 26
i - • (i).- dz - T(,(z) x'-' (2.6)

for i k+1,-k +2,...,2k. We will denote the matrix of the system (2.6), (2.7) by A?, its right-hand

side by y nk and its solution (01,2 ... , 2k) by f.. When there is no danger of confusion, we will
omit some of the indices, and write (0l,02,...,02k) and 0 or f", instead of ( and 0,6

respectively. The use ef expressions T as quadrature formulae for functions of the form (2.3) is
based on the following theorem.

Theorem 2.1.

Suppose that the systems (2.6), (2.7) have solutions 6' = (#jj, 2',...,$2) for all sufficiently

-" large n, and that the sums
2kE- 6()2 (2.8)

are bounded uniformly with respect to n. Suppose further that the function f (0,I -1 RI is
defined by (2.3). Then there exists such c > 0 that

ST.-.(f) - j f(t)dt j< -. (2.9)
0.nT

for all sufficiently large n.

Proof.

Applying the Taylor expansion to the functions & # at z 0 0, we obtain

f(z)= P(f)(x) + Rk(O)(x) e(z) + Rk('k), (2.10)

where k ( i 1 ( 0 ) . k: iO ( 0 ) '

P(f)(x) 8 (-) (2.11)

and Rk(), RA(i#) are such functions 0, 11 - R' that

Rk(4)(0) = (Rk(O))'(0) = ...-- (Rk(O))(k)(0) = 0, (2.12)

Rk(o)(0) _ (Rk(tO))'(o) = (Rk(*,))(k)(0) 0. (2.13)

N&.
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Substituting (2.10) into the left-hand side of (2.9), we obtain

I T. (f) - f(t)dt I:5
4Ifo I /:

I T'? (P(f)) - P(f)(x)dx 1 (2.14)

+ I 2".-(R(0) • 8) + R,(V))

-] (a(z).&~(*)(x) + R*(0)(z))dz I.

Due to (2.6), (2.7),

T7""0 (P(f)) - P(f)(x)dx .0, (2.15)

and we have

foST~p.(f) - f(t)dt I< .,

+ I T.(Rk(0)) R(o)(x)dx ( (2.16)

2k II
+ I F(Rk(X)( ) "(Xi)j=1

+ Rk ()(X)). 0 I.

Now the conclusion of the theorem follows from (2.2) (2.8), (2.12), (2.13), and Lemma A.2. 9'
3. Convergence rates for slngularities of the forms z and log(x)

For the remainder of this paper, 01, 4', ..., ,2k will denote functions (0, 1] - RI defined by the
formulae li(x) = x''- 1 for i = 1,2,..., k, (3.1)

= x)- - a(x) for i = k + , k k 2,...,2k. (3.2)

Lemma 3.1.

If s(x) x x' with qy a real number such that 0 <1 -y I< 1 then the functions 4'i,.., &

constitute a Chebychev system on the interval (0, 11 (i.e. the determinant of the 2k x 2k -matrix

B defined by the formula Bi = 0i (tj) is non-zero) for any 2k distinct points t1 , t2, ... , t, on that
interval.

Proof. &.

For a finite sequence P1,P2 ... ,P2k of 2k real numbers, P will denote a mapping (0, 11 -R

defined by the formula
2k

P(t) = ,p, - MO(t). (3.2)
iul

We will prove the lemma by showing that if t1, t, ... , t2, are distinct points on the interval (0,11 and

* P(t) = 0 for all i - 1,2,...,2k then all 2k coefficients pP2,...,P2k are equal to zero. By repeated

.
p.p

0 "...
, I
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application of the Rolle theorem, we conclude that there exist k distinct points Y, 9 Y2, -9 Yk on the
intervl (0, 1) such that P(k)(y) - 0 for all i = 1,2,...,k. Differentiating (3.2) k times, we obtain

k

pk(y)= i-k (3.3)
i-il

with wi = (i- 1+ y)(i- 2+-y)...(i - k + -y), and it is clear that wi # 0 for all i 1,2, ... ,k. Now
it follows from Lemma A.3 that

Pk+ = Pk+---.. P - 0- (3.4)

Substituting (3.4) into (3.2) and applying Lemma A.3 again, we see that pi = = ... = Ph - 0.

*:' Theorem 3.1. -.2

If s(z) = z" with 0 <I - I< I then the convergence rate of the quadrature rule 2:,#. is at least

Proof.

It immediately follows from Lemma 3.1 that the matrix of the system (2.6), (2.7) is non.
singular. We rescale the system (2.6), (2.7) by multiplying its i - th equation by (n - k)i - 1 for
i= 1, 2,..., k, and by (n. k)i- I-k+' for i - k + 1, k + 2, ...,2k, obtaining the system of equations

10(f' ldz - Tn"(1)... 1° " B'8 + 20 -02n + + (2k)° " a r n.k °  k"
(ak)O

6"1n + 2'. - 2 + .. + (2k)' I nk -fi (n - )l -

k1-11 N + k-"+ (2k)k- x1 " nk = (f'xk-1dx - T:(xk-))

(n. k)- ;(3.5)

1 :+ 1 . In + 2" - r2 + + (2k) 1 *8 - (f82nz ..T ( )) .... ~( • k -*

r(f+27+ x'+ldz - T.o (zl')) -..

.................................................................... L -.-
......................................................

1 ++k-I ++k- ... +(2) " kI• I - (f x +-ld. _- Tl(X -+h1))

with respect to the unknowns $,I, O, 0"2k. and we will denote the matrix of the system (3.5)
by Bt , and its right-hand side by Zk'. Obviously, Bk is independent of n, and IZknI is bounded
uniformly with respect to n due to Lemma A.2. Consequently, the solution of (3.5) is bounded
uniformly with respect to n, and due to Theorem 2.1, the convergence rate of T.,. is at least k.

The proofs of the Lemma 3.1 and Theorem 3.1 can be repeated almost verbatim with 8(z) "
log(z) instead of 8(z) = z , resulting in the following theorem.

N1
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Theorem 3.2.

If s(z) = log(z) then the convergence rate of the quadrature rule 7,#. is at least k.

4. Convergence rates for more general singularitles

Theorem 4.1.

Suppose that the function a : (0, 1] - RI is such that

X- 8'(x)
lirm-o ( (4.1) -
3-0 (x) . -;_

with 0 <1 a j< 1 . Then for sufficiently large n, the matrix A .k of the system (2.6), (2.7) is
non-singular, and the convergence rate of Tn. at least k.

Proof.

The proof below effectively consists of approximating s(z) on the interval [XI, X2k] by the
function S e • and using the Theorem 3.2.

We rescale the system (2.6), (2.7) by multiplying its i-th equation by (n.k)- 1 for i - 1,2, ..., k,
and by (n. k) i - k -1 for i = k + 1, k + 2, ...,2k, thus obtaining the system

"" 10 + 0 • + .. + (k) ° "  , -- (f Idz - Tgn(1)).-,: '

""(..k) o  y%.'
- (fo  d -T(x))

(u. k)1

1 k-l" .r + 2t-1" * + "'" + (2k) -1 " ,~t = (f zk-ldx - T:(xk-))10. +__0 .62 + 20. ,(x2) .2

a,(x,) ,,(x,--)" !
.. + (2k)o. .(_...). f (fl o. ,(xld(- T"( ° • ,( (4.2) . .

1(x,) *(Xn ) ( . k)O
10 8(X) 1 s(X2 )  ,+

a(I (Xa) ~-sxd

)s( 2n. (fo? a.(x)dx-T.n(xo "(z))) (4.2

... . . -__- •_2_=R,, (x)./I + 21- -8(X2) "62+

,,X) ,,-(XI) -(n .k)k-

. (2k)k-I (X2k) If_ _
-  ' s(_ )dx - T_(_ -

_
" s(_)))_"-

: Z ,(x.) ".,,(x*). ( . *(n -
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whose matrix we will denote by B. Due to Lemma A.2, the right-hand side of (4.2) is bounded
for sufficiently large n, and by applying Lemma A.5, it is easy to see that

bk" Bk 6kn(4.3)

with (6k),k = 1,2,... a sequence of 2k x 2k matrices such that limn_" II6k 11 = 0. Now it follows
from Lemma A.4 that for sufficiently large n, 11(B) - ' 11 is uniformly bounded. Thus, the solution L

of (4.2) is uniformly bounded for sufficiently large n, and due to Theorem 2.1, the convergence rate
of T75. is at least k.

Theorem 4.2.

Suppose that k > 1 and a function s : (0, 1] -. R1 is such that

.. a(z) is integrable on the interval (0, 1].

2.. i(z) = is integrable on the interval (0, 1].

3.. 8 is monotonic in some neighborhood of 0.

4.. The system (2.6), (2.7) has a unique solution for all sufficiently large n.

5.. The convergence rate of T , is at least k.
Then the convergence rate of the quadrature rule Tp. is at least k- 1.

Proof. %

Again, we start with rescaling the equations (2.6), (2.7). We define a diagonal 2k x 2k -matrix
D by the formula

Dii- (4.4)

for iff 1, 2,..., 2k, and the theorem easily follows from the observation that Ak - A . D.

Observation 4.1.

The combination of the Theorems 3.1, 3.2, 4.1. 4.2 permits one to apply end-point corrected
trapezoidal quadrature rules to a fairly wide variety of singular functions, including linear combi-
nations of powers of x, products of powers of X with /og(z), etc. Further genaralizations of the
quadrature rules Tn are discussed in Section 7.

S. Asymptotic behaviour of correction coefficients as n - oo

An obvious drawback of the expressions Ta,. as practical quadrature rules is the fact that
the weights ,"1, 0,.., have to be determined for each value of n by solving a system of linear
algebraic equations (albeit a small-scale one). In this section. we eliminate this problem for the
cases s(x) = x" and s(z) = log(z) by constructing a new set of correction weights A1, A2, ... , A 2
independent of n, and such that the quadrature rules T. are still of order not less than k.

Lemma 5.1.

Suppose that a = (aI,a2 .. am) is such that the right-end order of the quadrature formula
TO is m. Then for any a > 0 there exists c > 0 such thatia-N/o- ' C0

[' (TP(za ) - Xadx) - q' (T.I(x') - Xdx) j< (5.1)

K for any integer p, q such that, p < q.
N I,

'- b.
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Proof.

* From the formula (2.1), it is easy to see that

9+1 in

T~x~ zadx 1+ 11:() + i + a-fTd.T

E I I +1)Of+1)
a, 0 a+ v

im = (5.2)

qj q 2q

-~ ~ (P++ (!(..) + 1 Z( '9
qm p q j-1 a*.+!P)f

with Rpq defined by the formular

2q 'i q _____)2fxd (5.3)

q q

Due to Euler-Maclaurin formula,

R = 0((E -. (1W14)- 1 (5.4)
A q qO(.

* and we conclude that

a() - f -z (P)*+1 (T(x -f z) + 0(-L. -- L) (5.5)F

*which is equivalent to (5.1).

* Theorem 5.1.

Suppose that k, m are two natural numbers such that k < m - 1 and that a~ (a,, C2,..c

*is such that the quadrature rule Tn is of right-end order m. Suppose further that 8(x) - z" with 6'

0 <1 -y I< 1 , and that the coefficients ft" p"2..., 02k are defined as solutions of the system (2.6),
(2.7). Then

L. There exists a limit
lim 'i Ai (5.6)

for each i = 1, 2,..., 2k.
2.. for all i= 1. 2,..., 2k,1

I gn A (~) (5.7)

3.. A, do not depend on m, as long as m k +
4.. The quadrature formulae T.nA are of order at least k.
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Prof.

Suppose that p. q are two natural numbers, and p < q. Obviously,

8P = (B)f' Zk
* 8Oq= (Ek) 1  Z (.8

IIZkP -Zkj~(- (5.9)

and by combining (5.8) and (5.9), we see that for some i > 0,

16 -fqIp- (5.10).

Since fl, ,2... constitute a Cauchy sequence, t~ey converge to some limit A (A.1.A 2, ... , A2k),
which proves 1., and 2.,3.,4., easily follow from (.)5.0,5) and (5.5).

The proof of the following theorem is a repetition almost verbatim of the proofs of the Lemma
5.1 and Theorem 5.1.

Theorem 5.2.

If under the conditions of the Theorem 5.1, the singularity s(.x) =x'Y, is replaced with the
singularity e(z) = log(z), the conclusions 1. - 4. of the Theorem 5.1 rew &in correct-

Remark 5.1.

For singularities of the forms x", log (x), Theorems 5.1, 5.2 reduce the quadratures Tr"O to a
* more "conventional" form

I f (1i ) M 2k
f(-)dx ftToA." hi (X) +.-- , ~ 4 (xz-j,) + h Ai A,(X,) (5.8)

where fis defined by (2.3), h= 1,x i-h with im 12, ... ,n, xi .with j 1, 2,...,2k, and
the coefficients A, are independent of n.

* Remark 5.2.

Theorems 3.1, 3.2, 4.1, 4.2, 5.1, 5.2 establish that under certain conditions the order of2
*the quadrature rules T".. T.\ is not less than k. where 2k is the length of the vectors ~

.................... $2), ( 1. 2 A20-. Somewhat more detailed versions of the proofs of these the-
orems show that the order of these quadratures always lies between k and k. + 1. and is in some
cases equal to k; + 1. In the examples presented in the following section. we note the cases when
the latter situation occures.

6. Numerical Results
Algorithms have been implemented for .-valuating the quadratures Tn. under the conditions ~ i

of the Theorems 3.1, 4.1, 4.2, and the quadratures T". under the conditions of the Theorems 5.1,

~ 4
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5.2. The implementation of the algorithm for evaluating the quadratures T.p. is completely stright-
forward. After evaluating the matrix A nk and the right-hand side ynk of the system (2.6). (2.7),
the system is solved by means of a LINPAK Gaussian elimination subroutine, and the resulting
correction weights are used in the quadrature formulae T e ( see formula (2.4)).

In order to evaluate the coefficients A1 ,A2 , ...A2k for singularities of the forms ilog(x), we

start with a right-end corrected trapezoidal rule T," of order 20, obtained by means of the Euler-
Maclaurin formula. Under these conditions,

I< ) (6.1)

for all i = 1,2,...,2k (see Theorems 5.1, 5.2), and for reasonable k, the convergence of j9. to A, is
almost instantaneous. We used n = 64 and REAL *16 arithmetic to obtain 15 significant digits
presented in the examples below.

In the Tables 1 - 6, the coefficients A1 ,A2,...A2k are listed for singularities of the formslog (Z) X_ ,X , 10
iog(z),x,z~iix 3 i,z , and k = 2,3,4. It is clear from these tables that the correction
weights A1, A2, ..-A2k grow rapidly as k increases, causing increased round-off errors and making the

use of large k impractical in actial computations.
In many cases, k = 3 appears to be a reasonable compromise, resulting in roughly 4-th order

convergent rules, and not involving unreasonably large correction weights. Combining such a rule
with a standard 4-th order end-point corrections at the right end of the interval (see, for example,
i1]) we obtain the following quadrature formula

n 6 fx fx-)'2
]f(x)dx~h.(Zf(Xi)+ ZA.f(x,) fA -(f(X.,2 ) - 4f(x.)+ 3f(xT))) (6.2)"

foiml j=1 2 24

with h =--,xi = i. h for i = 1,2,..., n, and "Jfor j = 1. 2....,6. For the six singularities
listed above, the coefficients A1 , A2 , ...A-6 can be found in the middle columns of the Tables 1 - 6. In
the Table 7, convergence results are presented for some of the rules T7 and TAn\ with k = 3 and T"
a standard 4-th order end-point correction. Column I of this table contains the numbers of nodes
into which the interval 10, 11 was discretized. In all cases, the integrand was of the form

f(x) = (sin(23x) + cos(24x)) • s(z) + (sin(21x) + cos(22z)), (6.3)

with columns 2, 3, 4 containing the relative errors for the rule T. with s(x) equal to log(z),xi,

and x-% respectively. Columns 5. 0 contain relative errors for the rule T 5o with s(x) equal

to X-1 • log(x) + x- JL and (log(z)) 2 respectively. Finally. column 7 contains relative errors for
the standard 4-th order end-point corrected trapezoidal rule applied to the function (sin(21x) +
cos(22x)), presented here for comparison.

The following observations can be made from Table 7. and are typical for the quadratures

T -

1.. In all cases. the speed of convergence is roughly the same as for the end-point corrected trape-
zoidal rule applied to the function (sin(21x) + cos(22x)) (column 7).

2.. For the singularities log(x) and x2, the rules T\ display a typical 4-th order convergence.

3.. In columns 3 - 5, the convergence is somewhat erratic, especially for a(x) = x-10 in which._-
case the rule seems to fail after n = 320. In order to clarify the situation, the 4-th column ofK: the Table 7 was extended with n - 2560,5120, 10240.20480. The extension is shown in Table

% V"::.:

Lo.
°
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8, from which it is clear that the bottom part of the column 4 in Table 7 should be described
as erratic convergence, rather than a failure to converge.

4.. It appears from the 5-th column of Table 7 that the rule T . converges quite well for s(z) -
(log(X)) 2 , even though this singularity is not covered by any of the theorems of the present
paper. This has been repeatedly observed when the singularity s is monotonic, and in such
cases a version of Theorem 4.1 is usually fairly easy to prove. i

7. Generalizations and conclusions

The algorithm of the present paper admits several strightforward generalizations.

1.. There are classes of singularities not covered by this paper for which some versions of Theorems
3.1 and/or 5.1 can be fairly easily proven. The convergence of the quadrature rule for one of
them ( (log(x))' ) is demonstrated in the preceeding section.

2.. Correction nodes XI, X2, ... , X2k do not have to be equispaced. A different distribution of nodes
could possibly reduce absolute values of the correction weights \1 ,2, ..- \2k and 1, 02,- 0..,
thus improving the convergence. However, such specialized choice of correction nodes would
have to be performed separately for each singularity s.

3.. The quadratures can be easily modified to handle functions of the form

.O(x) - (x) + - 6i(x) Si(x) (7.1)

where 0, 01, 02 .... ,m are smooth functions, and 81, 82, .... 9m are several different singularities.
However, it is easy to see that the absolute values of the weights Rn tend to grow very rapidly
as m increases, and the author doubts the practical usefulness of such rules with m > 2.

4.. Quadrature rules Tan\, T . have fairly obvious analogues in two and three dimensions. How-
ever, the proofs of multi-dimensional versions of Theorems 3.1. 3.2, 4.1, 4.2, 5.1 are somewhat
more involved than those of their one-dimensional counterparts. These results will be reported
at a later date.

• . ... .-...... ....... ...... .......- ...........-........ ....- -, .. ..... %.".: . .,,.".•...........'
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Table 1
Correction Weights for the Singularity a = log(x)

k=2 k=3 k=4
0.160129841535717E+01 0.222876601846009E+01 0.309348340177712E+01
-.338255852191949E+01 -.123121207006261E+02 -.310178837674079E+020.362788846443413E+01 0.315796599730867E+02 0.136205915590327E+03
-. 134662835787181E+01 -.384039159001043E+02 -.314747480872421E-03

0.226735045911525E+02 0.421505412761263E+03
-.526589398196889E-O1 -.328785403878733E+03

0.138801167137067E+03
-.245552103718723E+02

Table 2
Correction Weights for the Singularity a = A

k=2 k=3 k=4
0. 107622636973350E+01 0.140373389574362E+01 0.176138469558481E+01
.147247373014210E+O1 -.610626975465971E+01 -.138211834485298E+02
0.138293501775035E+01 0.145821441189467E+02 0.545915011781337E+02
-.486687657341754E+00 -.163961527863182E+02 -.117357484549871E--03 "

0.895228275571686E+01 0.150779019932162E+03
-.193573822942934E+01 - 114778491157932E+03

0.476230959836121IE+02
-.829784263315958E+01

Table 3
Correction Weights for the Singularity s - -

k=2 k=3 k=4
0.333895462377735E+01 0.515686238420012E+01 0.788957615797699E+01
-. 103691855551396E+02 -.371802541857231E+02 -. 101483910269331E--03
0.123881739056139E+02 0.105027804788073E+03 0.498205235333950E-03
-.485794297425160E+01 -. 138820513091881E+03 -. 12417786045434 1E+04

0.879943166414350E+02 0.175109399358045E+04
-.216782165361041E+02 -.141908515209795E+04

0.617986326801910E+03
-.112327464963600E+03

* *a
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Table 4 -
Correction Weights for the Singularity xi

0. k=2 k=3 k=4
0. 120275440902998E+01 0.159679209113902E+01 0.207566347869413E+01
-. 191590588964576E+01 -.749191954692780E+01 -. 176817793306071E+02

0.189021521886824E+01 0.182610902534004E+02 0.723376732327415E+02
-.677063738252464E+00 -.210496743900247E+02 -.159272316539246E+03

0.117997957518642E+02 0.207188787576306E+03
-.261608415945115E+01 -.158671438914327E+03

0.660717800591290E+02
.115483695626909E+02

Table 5
Correction Weights for the Singularity a

k=2 k=3 k=4

' 0.245072941794592E+01 0.363848721531386E+01 0.538493619088162E+01
-.671933111554788E+01 -.239520591801675E+02 -.636859586874130E+02
0.775314064392466E+01 0.653732223792864E+02 0.300979353674521E+03
-.298453894632270E+01 -.840021842099929E+02 -.731168698310276E- 03

0.520805019262272E+02 0.1I01261655245219E- 04
-.125979681306671E+02 -.809425283937431E+03

0.48533467508443E+03

-.627343688909117E- 02

..': Table 6

Correction Weights for the Singularity 8 = A

k=2 k=3 k=4
0. 184790352839992E+02 0.321040181373839E+02 0.535441666101165E+02
-.765330172344763E+02 -.289780736142061E+03 -.846379842042659E+03
0.992955952836217E+02 0.895220650155513E+03 0.456845469197409E+04
-.407416133331446E+02 -.126326771498802E+04 -.121296416031938E+05

0.841976333390815E+03 0.179000593914225E+05
-.215752550553635E+03 -. 150266053430178E+05

0.673612868399159E+04
-.125506014574396E+04
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Table 7

Examples of Convergence of Quadrature Rules

n log(g) Xz-X Xa (log(x)) 2

".og(X)

10 .503E-01 .326E-01 .157E+00 .870E-01 .105E+00 .246E+00
20 .412E-03 .478E-03 .189E-01 .121E+00 .590E-02 .177E-01
40 .546E.-04 .498E-04 .964E-03 .148E-02 .219E-03 .115E-02
80 .102E-04 .506E-05 .422E-04 .584E-04 .651E-05 .722E-04
160 .992E-06 .359E-06 .146E-05 .243E-05 .434E-07 .453E-05
320 .803E-07 .233E-07 .359E-08 .679E-07 .180E-07 .283E-06
640 .600E-08 .147E-08 .958E-08 .159E-08 .241E-08 .177E-07
1280 .425E-09 .911E-10 .157E-08 .616E-09 .234E-09 .109E-08

Aft-N

Table 8

Extended Convergence Results for s(x) =x-?

n 10 20 40 80 160 320
6 .157E-00 .189E-01 .964E-03 .422E-04 .146E-05 .359E-08

n 640 1280 2560 5120 10240 20480
6 .958E-08 .157E-08 .218E-9 .269E-10 .319E-11 .334E-12
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